Homework 9, due 5/1
Only your four best solutions will count towards your grade.

1. Let E be a complex vector bundle over a complex manifold X, and ∇ a connection on E. Show that the trace $\operatorname{tr} F_{\nabla}$ of the curvature defines a closed two-form on X.
2. In the setting of the previous question, show that if ∇^{\prime} is another connection on E, then $\left[\operatorname{tr} F_{\nabla^{\prime}}\right]=\left[\operatorname{tr} F_{\nabla}\right]$ in $H^{2}(X, \mathbf{C})$.
3. Let L be a holomorphic line bundle over a complex manifold X. Suppose that we have a sheaf homomorphism

$$
D: L \rightarrow \Omega_{X} \otimes L
$$

satisfying the Leibniz rule $D(f \cdot s)=\partial f \otimes s+f \cdot D(s)$ for local holomorphic functions f and holomorphic sections s of L. Here Ω_{X} denotes the sheaf of holomorphic $(1,0)$-forms on X, and we are using L to denote the sheaf of holomorphic sections of L.
Show that D can be extended to a connection

$$
\nabla: \mathcal{A}^{0}(L) \rightarrow \mathcal{A}^{1}(L)
$$

on L such that $\nabla s=D s$ for holomorphic sections s, and the curvature of ∇ is a holomorphic $(2,0)$-form on X.
4. In the setting of the previous question, if in addition X is a compact Kähler manifold, show that the curvature of ∇ vanishes.
5. Let (E, h) be a Hermitian vector bundle over a complex manifold X, and let $p \in X$ be a point. Let ∇ be a unitary connection on E. Show that there exists a unitary frame for E in a neighborhood of p, such that the corresponding matrix of connection 1-forms A satisfies $A(p)=0$.

